Integral Transform Solution of Natural Convection in a Square Cavity with Volumetric Heat Generation

نویسندگان

  • C. An
  • C. B. Vieira
  • J. Su
چکیده

The generalized integral transform technique (GITT) is employed to obtain a hybrid numericalanalytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of nanoparticle shape on natural convection heat transfer in a square cavity with partitions using water-SiO2 nanofluid

In this paper a numerical investigation is performed to study the effects of different nanofluids on convective heat transfer enhancement in a partitioned square cavity subject to different shapes of nanoparticle using water-SiO2 nanofluid. This study has been carried out to analyze the effects of SiO2 nanoparticle, its volumetric fraction between 2 and 4%, and nanoparticle shape (i.e. blades, ...

متن کامل

Numerical Study of Natural Convection Heat Transfer in a Horizontal Wavy Absorber Solar Collector Based on the Second Law Analysis

Literature about entropy generation analysis of a wavy enclosure is scare. In this paper. a FORTRAN cod using an explicit finite-volume method was provided for estimating the entropy production due to the natural convection heat transfer in a cosine wavy absorber solar collector. The volumetric entropy generation terms both the heat transfer term and the friction term were straightly calculated...

متن کامل

The optimization of inlet and outlet port locations of a vented square cavity

In this study, mixed convection heat transfer and local and global entropy generation in aventilated square cavity have been investigated numerically. The natural convection effect isachieved by a constant heat flux imposed at the bottom wall and cooled by injecting a coldfollow. In order to investigate the effect of port location, four different placementconfigurations of the inlet and outlet ...

متن کامل

Numerical Investigation of Nanofluid Mixed Convection and Entropy Generation in an Inclined Ventilating Cavity

This paper presents results of a numerical study of mixed convection and entropy generation of Cu–water nanofluid in a square ventilating cavity at different inclination angles. Except a piece of bottom wall with a uniform heat flux, all of the cavity walls are insulated. The inlet port is placed at the bottom of the left wall and the outlet port is positioned at the top of the right wall....

متن کامل

Numerical Study of Natural Convection in a Square Cavity Filled with a Porous Medium Saturated with Nanofluid

Steady state natural convection of Al2O3-water nanofluid inside a square cavity filled with a porous medium is investigated numerically. The temperatures of the two side walls of the cavity are maintained at TH and TC, where TC has been considered as the reference condition. The top and the bottom horizontal walls have been considered to be insulated i.e., non-conducting and impermeable to mass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013